BIT_{HESIS} 本科生学位论文 LAT_EX 模板 快速使用指南

北京理工大学 BIThesis 开源项目 2025 年 10 月 17 日

目录

第1章	快速使用指南	1
1.1	方法一: 在本地电脑上编译生成 PDF	1
	1.1.1 安装 TeX 发行版——TeX Live	1
	1.1.2 安装编辑器——TeXstudio	2
	1.1.3 下载最新模板	2
	1.1.4 编译生成 PDF	3
1.2	方法二:在 Overleaf (浏览器)上编译生成 PDF	4
	1.2.1 注册 Overleaf 账号	4
	1.2.2 访问 BIT _H E _S I _S 的 Overleaf 模板	4
	1.2.3 编译生成 PDF	5
第2章	关于 LATEX 和 BITHESIS 的一些疑难解答	6
2.1	为什么要用 LATEX 和 BITHESIS?	6
2.2	为何需要这么多步骤,我该如何开始?	6
2.3	在自己的电脑上编写论文	7
2.4	本地编译与在线平台,我该使用哪一个?	7
2.5	如何将自己电脑上的论文转到 Overleaf	8
第3章	模板组成与使用	9
3.1	认识模板组成	9
	3.1.1 模板手册 bithesis.pdf	9
	3.1.2 人口文件 main.tex	9
	3.1.3 模板类文件 bithesis.cls	10
	3.1.4 主体内容文件夹	10
3.2	个人信息录入	10
3.3	摘要和关键字	11
3.4	论文主体	11
3.5	其他部分	12
	3.5.1 交叉引用	12

BIT_HE_SI_S本科生毕业设计(论文)L^AT_EX模板快速使用指南

3.6	生成盲	审版论文	13
第4章	公式、	图表等文档元素	14
4.1	公式与	数学环境	14
	4.1.1	公式及术语表	14
	4.1.2	长公式排版	15
	4.1.3	定理环境	15
4.2	向文档	中插入图像	16
	4.2.1	支持的图片格式	16
	4.2.2	长标题的换行	18
4.3	3 表格的例子		19
4.4	参考文	献管理	22
	4.4.1	将参考文献的内容与表现分离	22
	4.4.2	在正文中引用参考文献	22
4.5	用 listin	ngs 插入源代码	23
第5章	参考文	て献	27
结论			28
附录 A	学习资	5料	29
A.1	LATEX =	学习资料推荐	29
A.2	BITHES	Is 模板配置使用手册	29
附录 B	BITHE	sIs 与北理工历代 IATEX 模板项目简介	30
致谢			31

第1章 快速使用指南

本章将通过多个小节,介绍如何快速成功编译出一份符合学校要求的毕业论文。

其中, 第 1.1 节介绍在本地电脑上编译生成 PDF; 第 1.2 节介绍在 Overleaf(浏览器)上编译生成 PDF。这两种方法相互独立, 你可以根据喜好自行选择其中一种。

1.1 方法一: 在本地电脑上编译生成 PDF

1.1.1 安装 TeX 发行版——TeX Live

访问 tug.org/texlive,下载并安装 TeX Live。TeX Live 包含了所有将 LATEX 编译成 PDF 所需的代码和工具。

Windows

参考 Easy install, 下载并运行 install-tl-windows.exe。

• Linux

参考 Quick install, 下载 install-tl-unx.tar.gz 并解压, 运行 install-tl。

macOS

参考 Downloading MacTeX,下载并运行 MacTeX.pkg。

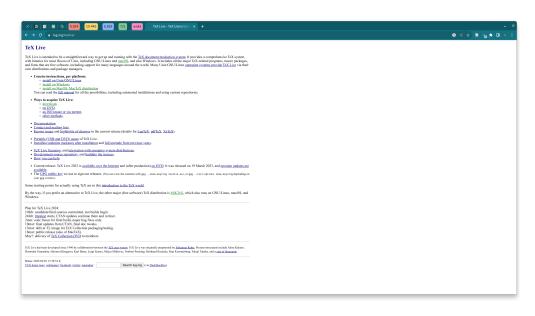


图 1.1 TeX Live 下载页面

1.1.2 安装编辑器——TeXstudio

访问 texstudio.org,下载并安装 TeXstudio。TeXstudio 是一个开源的、跨平台的、功能强大的 LATeX 编辑器。使用它,你可以更方便地进行 LATeX 的写作与编辑。

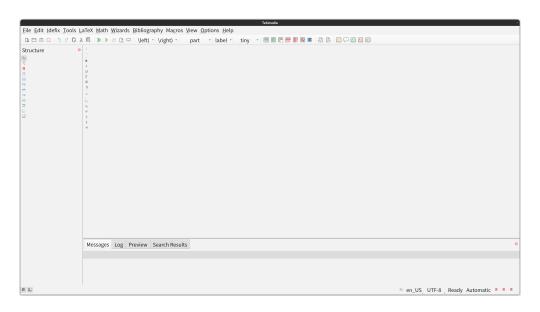


图 1.2 TeXstudio 界面

1.1.3 下载最新模板

如果你选择使用目前版本的模板, 可以跳过该步骤。

访问 BIThesis.bitnp.net → 下载模板,按照网页提示,从校内开源镜像站或校外 GitHub Releases 下载模板压缩包 "undergraduate-thesis.zip"。

若为全英文专业,请选择"undergraduate-thesis-en.zip"。

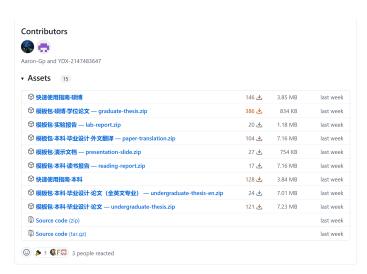


图 1.3 校外 GitHub Releases 模板下载页面

1.1.4 编译生成 PDF

解压模板压缩包,打开 TeXstudio,点击 "File → Open" 按钮,选择 "main.tex" 文件,即可打开模板。

接着,点击"Build & View"按钮(两个叠加的绿色三角),即可编译生成 PDF。

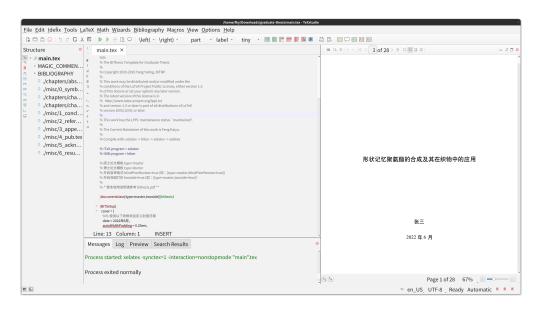


图 1.4 TeXstudio 编译生成 PDF

1.2 方法二:在 Overleaf (浏览器)上编译生成 PDF

BIT_HE_SI_S 项目已经在 Overleaf 上分享了多个模板,它们会与最新版本保持同步¹。 因此,你可以直接在 Overleaf 上复制并使用这些模板。

1.2.1 注册 Overleaf 账号

访问 overleaf.com(如图 1.5 所示),点击右上角的 "Register" 按钮,注册账号并登录。

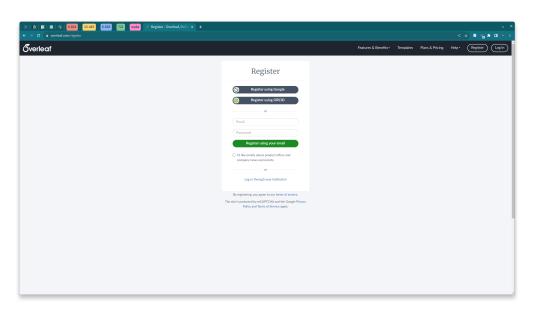


图 1.5 Overleaf 注册页面

1.2.2 访问 BITHESIS 的 Overleaf 模板

访问 BIThesis.bitnp.net → (右上角) Overleaf, 即可跳转到模板页面。

找到"本科生·毕业设计·论文"模板,点击"open in Overleaf"按钮,即可跳转到 Overleaf 上分享的项目中。

若为全英文专业,请选择"本科生·毕业设计·论文(全英文专业)"。

¹需要注意, 你复制的模板不会自动更新。

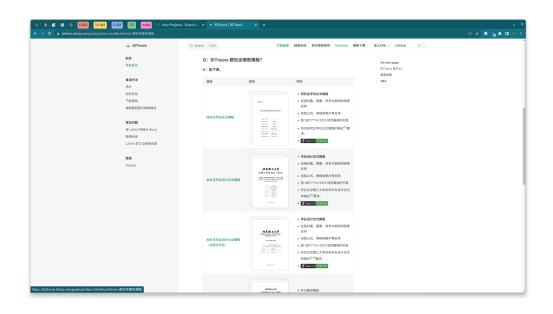


图 1.6 在 BIThesis 网站上,选择合适的模板并跳转

1.2.3 编译生成 PDF

点击 "Recompile" 按钮,即可编译生成 PDF。

图 1.7 编译生成 PDF

此外,BIT_HE_SI_S 也支持 TeXPage 等国产在线平台。请按**第** 1.1.3 节下载模板压缩包,然后手动上传至在线平台。

第2章 关于 LATEX 和 BITHESIS 的一些疑难解答

2.1 为什么要用 LATEX 和 BITHESIS ?

学术、学位论文有严格的格式要求。校方一般提供 Word 模板。虽然一般同学更常用 Word, 但是:

如果你有足够多使用 Word 的经历,一定会体验过 「同一份 Word 文档,在不同地方打开就变得不同」 这样的魔幻现实主义色彩的经历。

LATEX 适用于学术论文排版,使用者能将关注点更多放在内容质量,避免繁琐的格式调整。BITHESIS 提供了一套开箱即用的 LATEX 模板,符合北京理工大学本科生毕业设计(论文)规范。

2.2 为何需要这么多步骤, 我该如何开始?

首先,LFT_EX 与 Word 不同,它本质上是用于排版的「语言」或「语法规则」。我们实际上是编辑<u>文本文件</u>(以.tex 结尾的文件),用一套<u>拟定好的标记语法</u>设定文字的样式,并利用一些工具,将其转化为 PDF 文档。

- **文本文件** 意味着我们只需要创建一个以.tex 结尾的文件,即可开始论文内容的撰写;
- <u>拟定好的语法</u> 则需要我们了解一些 LATEX 中常用的语法语言规则,用来以文本的形式描述内容的格式,从而让下面提到的工具可以根据格式需要,将文档转化为 PDF;
- <u>利用一些工具</u> 也就表示我们需要这些工具(程序),来将文本内容转化为符合格式的 PDF 文档:我们或是下载安装他们到本地,或是使用在线平台。

因此,本手册也将以这样的逻辑,为大家分别介绍每处需要的知识——我们将首先介绍如何「安装这些工具」,并如何更舒服地创建、编写此「文本文件」(在自己的电脑上和使用在线的编辑器是不一样的);而后,我们将在后续的章节,简单的讲述常用的「拟定好的语法」—以让大家快速上手,使用 BITHESIS 撰写自己的毕业论文。

2.3 在自己的电脑上编写论文

第1.1节介绍了如何安装 TeX Live (一些工具) 和 TeXstudio (文本文件编辑器)。 若您已正常得到 PDF, 可直接跳到第3章编写论文。

在这里,我们将在自己的电脑上配置安装撰写 L^AT_EX 的相关工具。首先,我们搞定一些工具的安装,来更方便的撰写 文本文件 并将其转化为符合格式的 PDF 文档。

一些工具的安装 在 LATEX 的世界中,我们的「一些工具」包括将 LATEX 源码按照格式转换为 PDF 文档的「编译器」,和支撑部分 LATEX 格式语法的「宏包」。我们将他们统称为一个 LATEX 发行版——也就是我们需要在自己的电脑上安装的软件。

一般用的标准 L^AT_EX 发行版就是 T_EXLive (macOS 上又名 MacT_EX), 安装方法 见**第** 1.1 节。

文本文件 我们撰写的 LATEX 文档,其实是「无格式」的文本文档。也因此,任何能够编辑文本的工具我们其实都可以使用。但是,专业的 LATEX 编辑器一般会提供 LATEX 源码的编辑和预览功能。虽然不是必要的,但是使用编辑器可以大大提高 LATEX 的使用效率。

对于 T_EXLive 或者 MacT_EX,发行版自带了基础的编辑器(分别是 T_EXworks 和 T_EXShop),可直接使用。集成的编辑环境,比如 T_EXstudio 也是推荐大家使用的。另外,比如 VS Code 和 Vim 等通用代码编辑器,也可以借助插件的安装,提升 L^AT_EX 的撰写体验。更具体的指南可参考编辑器配置与模板编译 | BIThesis。

到此,我们其实就可以直接使用本模板,在自己的电脑上进行论文的编写了。如果想再了解有关在线编辑平台 Overleaf 的相关内容,请继续阅读第 2.4 节;否则,大家可以直接跳转到第 3 章,了解模板的使用方法。

2.4 本地编译与在线平台, 我该使用哪一个?

Overleaf、TeXPage 等在线平台在浏览器中提供了 LATEX 编辑器,可以直接在网页上编辑预览 LATEX。选用在线平台既有优点也有缺点:

优点

- 注册即用,无需自己安装 LATEX 发行版并配置编辑器。

- 云端同步, 文档可以跨设备编辑预览。
- 协作便捷,可以共享项目,能让前辈实时批注。

缺点

- 依赖网络, 信号一差就无法操作, 且不能涉及秘密内容。
- 编译受限,特别是免费时长有限¹,参考文献、图片特别多时,只能<mark>变通</mark>。
- 集成困难,例如若用 Zotero 等文献管理软件,很难自动连接。

因此,需要使用者根据自己的需求进行选择。

2.5 如何将自己电脑上的论文转到 Overleaf

第 1.2 节介绍了如何从 BIThesis.bitnp.net 新建项目,那样通常更简单;不过若您已在本地用了模板,想转到 Overleaf,请参考此节。

1. 按网页提示上传文件到 Overleaf, 注意**避免嵌套文件夹**。

(原因: 嵌套文件夹可能导致无法统计字数; 不过不影响编译。)

参考图 1.7 , 文件 main.tex、文件夹 chapters/等在根目录,而没有嵌套在 undergraduate-thesis/文件夹中。若您已嵌套,可到左侧文件列表单击再拖 动来移动文件。

详细操作如下。访问 overleaf.com/project, 单击左上角 New Project, 然后有下面两种方法。

- 选择 Blank Project, 稍等片刻。待创建完成后, 选择左上角 Upload 按钮, 逐一上传文件 (Select files) 或一次性上传文件夹 (Select a folder)。
- 将自己电脑中的文件夹打包成 ZIP, 通过 Upload Project 上传 ZIP 文件。
- 2. 单击左上角 Menu 打开侧边栏,找到 Settings 一段,**将 Compiler 一项的值改** 为 XeLaTeX。

(原因: 默认的 pdfLaTeX 几乎不支持汉字,不修改则无法正常编译。)

¹2025 年, 免费版 Overleaf 是 20 s, 免费版 TeXPage 是 1 min。

第3章 模板组成与使用

在本章中,我们将介绍本模板的组成部分,以及如何使用本模板和基本的 LATEX 语法进行论文写作。

3.1 认识模板组成

/ι	/undergraduate-thesis/	
-	bithesis.pdf BIT $_{H^{\text{E}}S^{\text{I}}S}$	模板的使用手册
-	bithesis.cls	模板类文件
L	latexmkrc	nkrc 的编译选项
-	main.tex	入口文件
-	chapters/	正文内容文件夹
		摘要
	1_chapter1.tex	章节一
	<u></u>	
-	images/存放了一些图片,也可以在正文写作。	中用于存放图片
	<u></u>	
L	misc/包含参考文献、结论等情	前置、后置内容
	1_originality.tex	

在本模板提供的文件夹中、主要包含了上方所示的几个文件夹与文件。

3.1.1 模板手册 bithesis.pdf

需要注意的是,bithesis.pdf 文件是本模板的使用手册,其中包含了本模板的所有使用方法,以及一些注意事项。在正式写作之前或者遇到问题时,可以先阅读该手册。

3.1.2 入口文件 main.tex

main.tex 是本模板的入口文件, 其中包含了本模板的所有配置信息, 并引用了其余文件夹 (chapters/、misc/等)的各个章节。在这里, 我们可以进行个人信息的录入, 以及通过参数调整论文的各处格式。当然, 每个参数的用法都已经在 bithesis.pdf 中进行了详细的说明。

3.1.3 模板类文件 bithesis.cls

在 main.tex 的最上方,我们可以看到如下的代码:

```
\documentclass[...]{bithesis}
```

这里的 bithesis 引入的就是 bithesis.cls 文件,也就是本模板的类文件。该文件 定义了本模板使用的所有格式,保证我们的论文符合学校的要求。

3.1.4 主体内容文件夹

其余的文件则一起构成了我们文章中的各个部分,其中包括了前置部分的封面、目录、原创性声明、摘要,以及正文部分的各个章节,后置部分的参考文献、附录、致谢等等。你可以打开这些示例文件,查看这些文件内容都在最终的论文中起到了什么作用。得益于我们提供的模板类,我们将大量的格式设置工作都放在你看不到的地方。而你只需要关注论文的内容——也就是文字本身——即可。

因此我们的写作过程将变得十分简单:

- 1. 在 main.tex 中填写个人信息, 调整论文格式;
- 2. 在 chapters/文件夹中编写论文的各个章节;
- 3. 补充在 misc/文件夹中的其他内容。

更棒的是,我们可以<mark>通过修改配置一键生成支持盲审的论文版本——</mark>一次写作, 多种格式!

3.2 个人信息录入

在 main.tex 中, 我们可以看到如下的代码:

```
1 \BITSetup{
2 % ...
3 cover = {
4 %% 使用以下参数来自定义封面日期
5 date = 2022年6月,
6 },
7 info = {
8 author = 张三,
9 major = 材料科学与工程,
```

```
10 school = 材料学院,

11 keywords = {…; …},

12 % ...

13 },

14 % ...

15 }
```

这里的各个参数就是用于控制论文封面的个人信息的。在这里,我们用自己的信息替换掉这些默认参数,就可以生成自己的论文封面了。

上方的 cover 参数中,date 一项用于自定义封面中的日期。如果不填写该参数,则默认使用当前的日期。

是的,就是这么简单!

有关所有参数的详细说明,可以参考 bithesis.pdf 中的内容。篇幅关系,不再 赘述。

3.3 摘要和关键字

中英文摘要在 chapters/ 文件夹中的 0_abstract.tex 编写:

```
l \begin{abstract}

 本文……

lend{abstract}

begin{abstractEn}

In order to exploit…

| \end{abstractEn}
```

至于摘要后的关键字,可编辑 main.tex, 在「信息录人」中配置 info/keywords、info/keywordsEn。

3.4 论文主体

由于已经存在了大量的示例内容、网络上已有丰富的 LATEX 的教程,我们在这里不再赘述如何使用 LATEX 进行论文的撰写; 只是快速过一下我们在撰写论文时,使用的常用命令。

如果你对 $ext{LMEX}$ 还不熟悉,或者想要了解更多的内容,可以参考网络上存在的优秀的 $ext{LMEX}$ 教程,比如 $ext{M录}$ A 中提到的那些。

3.5 其他部分

misc/文件夹中各个文件与正文的对应关系如下:

- 1_originality.tex、1_originality.pdf 对应原创性声明;
- 2 conclusion.tex 对应结论;
- 3_reference.tex、ref.bib 分别对应「参考文献」一节和其中的文献;
- 4_appendix.tex 对应附录;
- 5_acknowledgements.tex 对应致谢。

由于在论文中,这些部分的样式固定且内容较短,因此我们将这些部分的内容放在了单独的文件中。同时,我们也在每个文件中提供了示例内容,以供参考。相信你在阅读这些示例内容时,就已经知道了如何编写这些部分的内容了。

3.5.1 交叉引用

3.5.1.1 公式和图表引用

交叉引用的前提是需要在定义章节、公式和图表的时候都对其进行命名标签(即命令),在实际使用过程中通过标签进行引用。根据引用的特点可以将应用分成表 3.1中 所示三类。

章节级别 关键字

章 \chapter
节 \section
子节 \subsection
表格名称 \caption{标题名称}

表 3.1 章节设置关键字

其中,表格和图片的摆放位置由 \begin{table} 或 \begin{figure} 后面的中括号设置,例如 [htb] 表示可以将图表放在当前位置 (here)、页面顶端 (top) 或者页面底端 (bottom)。

引用标签 \label{引用名称}

3.5.1.2 文献引用

BIT_HE_SI_S 论文模板使用 BibLaTeX 宏包管理参考文献,使用方法与普通的 BibTeX 宏包类似,但是更加强大。在使用时,请遵循以下步骤:

- 1. 在 misc/ref.bib 中添加参考文献条目;
- 2. 在正文中使用 \cite{key} 或 \parencite{key} 等命令引用文献。

3.6 生成盲审版论文

提交论文用于匿名评阅(又名盲审或盲评)时,需要"隐去论文作者和导师姓名, 以及致谢、论文成果等与作者有关的信息"。

此时请编辑 main.tex,给开头 \documentclass 加上 blindPeerReview=true 选项。修改后如下:

- 1 \documentclass[type=bachelor, blindPeerReview=true]{bithesis}
- 2 % 或 \documentclass[type=bachelor_english, blindPeerReview=true]{bithesis}

第4章 公式、图表等文档元素

通常可先跳过这章,有需求再回来翻。

公式、图像和表格广泛用于学位论文,且会被正文频繁交叉引用,LATEX 也能对它们高效处理。若想引用这些内容,定义时要注意设定引用标签。此外,图表并无严格摆放位置要求,LATEX 会参考文字内容上下浮动,尽量避免表格窜行等问题。

4.1 公式与数学环境

4.1.1 公式及术语表

公式有行内夹杂、独占整行两种。行内公式写在一对\$间,如 $m = \rno V$ 排版 为 $m = \rho V$; 独行公式则写在\begin{equation}与\end{equation}之间。

为方便,可用 latexlive.com 等网站**在线编辑**公式,或用 Mathpix Snipping Tool 等 **从图片转换**。一般的 LATEX 编辑器如 TeXstudio 也都会提供语法补全。

实例 1: 以下是 L-B 非稳态流动升力模型,公式引用为式 (4.1)。该公式的术语列表见表 4.2。

$$C_L = C_{L0} + C_{L\alpha} \left(\frac{1 + \sqrt{X}}{2} \right) \alpha \tag{4.1}$$

```
1 \begin{equation}
2  \label{eqn:LBmodel}
3  C_{L} = C_{L0} + C_{L \alpha} \left( \frac{1+\sqrt{X}}{2} \right) \alpha
4 \end{equation}
```

代码 4.1 L-B 非稳态流动升力模型

4.1.2 长公式排版

Math mode 有丰富实用例子,其中长公式一例如下,有需要的的同学可参考。

$$\frac{1}{2}\Delta(f_{ij}f^{ij}) = 2\left(\sum_{i< j}\chi_{ij}(\sigma_i - \sigma_j)^2 + f^{ij}\nabla_j\nabla_i(\Delta f) + \nabla_k f_{ij}\nabla^k f^{ij} + f^{ij}f^k \left[2\nabla_i R_{jk} - \nabla_k R_{ij}\right]\right) \tag{4.2}$$

```
1 \begin{multline}
2 \frac{1}{2} \Delta (f_{ij} f^{ij}) =
3  2 \left(\sum_{i<j} \chi_{ij} (\sigma_{i} - \sigma_{j})^{2} +
4  f^{ij} \nabla_{j} \nabla_{i} (\Delta f) + \right. \\
5 \left. + \nabla_{k} f_{ij} \nabla^{k} f^{ij} + f^{ij} f^{k}
6  \left[2 \nabla_{i} R_{jk} - \nabla_{k} R_{ij} \right]
7 \vphantom {\sum_{i<j}} \right)
8 \end{multline}</pre>
```

代码 4.2 长公式排版

4.1.3 定理环境

在 bithesis.cls 中定义了丰富的定理**环境** algo(算法)、them(定理)、lem(引理)、prop(命题)、cor(推论)、defn(定义)、conj(猜想)、exmp(例)、rem(注)、case(情形),amsmath 还提供了一个 proof(证明)的环境。这里举一个"定理"和"证明"的例子。

定理 4.1 (留数定理). 假设 U 是复平面上的一个单连通开子集, a_1, \ldots, a_n 是复平面上有限个点,f 是定义在 $U\setminus\{a_1, \ldots, a_n\}$ 上的全纯函数,如果 γ 是一条把 a_1, \ldots, a_n 包围起来的可求长曲线,但不经过任何一个 a_k ,并且其起点与终点重合,那么:

$$\oint_{\gamma} f(z) dz = 2\pi \mathbf{i} \sum_{k=1}^{n} I(\gamma, a_k) \operatorname{Res}(f, a_k)$$
(4.3)

如果 γ 是若尔当曲线,那么 $I(\gamma, a_k) = 1$,因此:

$$\oint_{\gamma} f(z) dz = 2\pi \mathbf{i} \sum_{k=1}^{n} \text{Res}(f, a_k)$$
(4.4)

在这里, $\operatorname{Res}(f, a_k)$ 表示 f 在点 a_k 的留数, $\operatorname{I}(\gamma, a_k)$ 表示 γ 关于点 a_k 的卷绕数。卷绕数是一个整数, 它描述了曲线 γ 绕过点 a_k 的次数。如果 γ 依逆时针方向绕着 a_k 移动,卷绕数就是一个正数,如果 γ 根本不绕过 a_k ,卷绕数就是零。

定理 4.1的证明。

证明. 首先, 由……

其次, ……

所以……

```
1 \begin{them}[留数定理]
2 假设$U$是复平面上的一个单连通开子集……
3 \end{them}
```

代码 4.3 定理环境

```
1 \begin{proof}
2 首先,由……
3 其次,……
4 所以……
5 \end{proof}
```

代码 4.4 证明环境

上面的公式例子中,有一些细节需要注意。微分号 d 应该使用直立体,也就是用 mathrm 包围起来。并且,微分号和被积函数之间应该有一段小间隔,可以插入\,得 到,也可使用\dif来输入微分符号。斜体的 d 通常只作为一般变量。i,j 作为虚数单位 时,也应该使用直立体,为了明显,还加上了粗体,例如\mathbf{i}。斜体 i,j 通常 用作表示序号。其他字母在表示常量时,也推荐使用直立体,譬如,圆周率 π (需要 upgreek 宏包),自然对数的底 e。

4.2 向文档中插入图像

4.2.1 支持的图片格式

LATEX 可以很方便地插入 PDF、EPS、PNG、JPG 格式的图片。

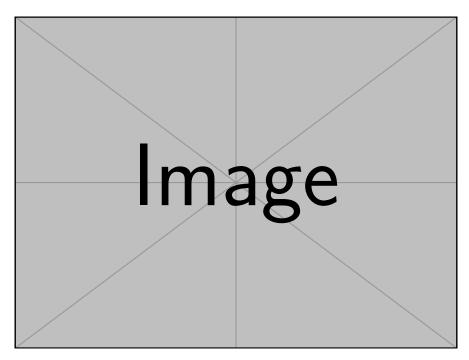


图 4.1 单张图片插入的基本示例

在学位论文中,插图地使用简单地分为两类:单列图片和多列图片。图片的格式包含*.jpg、*.eps、*.pdf,既可以是位图也可以是矢量图,在插入图片时可以定义其高度和宽度。

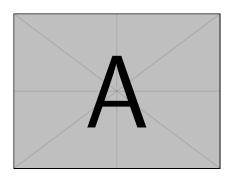
最基本的图片插入示例可见图 4.1, 其代码如代码 4.5所示。

其中\centering表示图片居中,\includegraphics[…]{…}导入图片并指定图片大小,\caption{}指定图片标题,而\label{…}为图片加上引用标签。

```
1 \begin{figure}
2 \centering
3 \includegraphics[width=0.75\textwidth]{example-image}
4 \caption{单张图片插入的基本示例}\label{fig:diagram}
5 \end{figure}
```

代码 4.5 示例插图代码

插入两幅图片的例子如图 4.2 所示。这两个水平并列放置的图共享一个"图标题"(table caption),没有各自的小标题。


```
begin{figure}

centering

includegraphics[width=0.35\textwidth]{example-image-a}

hspace{1cm}

includegraphics[width=0.35\textwidth]{example-image-b}
```

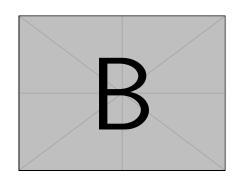



图 4.2 水平并列放置图片的基本示例

图 4.3 BIT 是我国历史最悠久的高等学府之一,是教育部直属、工信部共建的全国重点大学,985,211

- 6 \caption{水平并列放置图片的基本示例}
- 7 \label{fig:png-jpg}
- 8 \end{figure}

代码 4.6 插入 PNG/JPG

更多关于 LATEX 插图的例子可以参考《LATEX 插图指南》。

4.2.2 长标题的换行

图 4.3 和图 4.4 的标题都比较长。对比可发现图 4.4 的标题换行效果更好一些,它使用了 minipage 环境来限制整个浮动体的宽度。

不过在实际使用中, 你可以根据排版的整体效果来自行决定。

- 1 \begin{figure}
- 2 \centering
- 3 \includegraphics[width=10cm]{figures/pic1}
- 4 \caption{BIT是我国历史最悠久的高等学府之一,是教育部直属、工信部共建的全国重点大学,985,211}

图 4.4 BIT 是我国历史最悠久的高等学府之一,是教育部直属、工信部共建的全国重点大学,985,211

```
\label{fig:longcaptionbad}
 \end{figure}
8 \begin{figure}
   \centering
   \begin{minipage}[b]{0.6\textwidth}
10
   \centering
11
   \includegraphics[width=10cm]{figures/pic2}
12
   \caption{BIT是我国历史最悠久的高等学府之一,是教育部直属、工信部共建的全国重点
13
     大学, 985, 211}
   \label{fig:longcaptiongood}
    \end{minipage}
16 \end{figure}
```

代码 4.7 长标题的换行

4.3 表格的例子

表格的定义和引用就不多做介绍,表格内容包含在\begin{table} 和 \end{table} 之间。这里给出一些表格的例子。

Tables Generator可以用于在线生成表格

先以模板示例中第一章的表 4.1为例,插入代码为代码 4.8所示。

```
1 \begin{table}
2 \centering
```

 水溶型
 胶体分散型
 乳液型

 溶解 ~ 胶束
 分散
 白浊

 水溶型
 胶体分散型
 乳液型

0.001 - 0.1

数千~20万

> 0.1

> 5000

表 4.1 模板示例中第一章的表一

类别

状态

外观

粒径 $/\mu m$

重均分子量

表 4.2 L-B 模型中参数的物理意义

< 0.001

 $1000 \sim 10000$

Parameters	Physical meaning
$C_{L\alpha}$	Lift curve slope
a_1	Controls the shape of the stall curve
$lpha^{\star}$	The break point at which $X = 0.5$
$ au_1$	Represents the tendency of the model to track the static curve
$ au_2$	Gives the model lift overshoot

```
\caption{水系聚氨酯分类} \label{tab:category}
   \begin{tabular*}{0.9\textwidth}{@{\extracolsep{\fill}}cccc}
   \toprule
     类别
             &水溶型
                      &胶体分散型 &乳液型 \\
   \midrule
     状态
             &溶解$\sim$胶束 &分散 &白浊 \\
     外观
             &水溶型
                      &胶体分散型 &乳液型 \\
     粒径$/\mu m$ &$<0.001$ &$0.001-0.1$
                                        &$>0.1$ \\
10
     重均分子量 &$1000\sim 10000$ &数千$\sim 20万$ &$>5000$ \\
11
   \bottomrule
12
   \end{tabular*}
14 \end{table}
```

代码 4.8 示例插表代码

另举一个两列的表格例子(表4.2以及代码4.9)。

```
l begin{table}

centering

begin{center}

caption{L-B模型中参数的物理意义}

begin{tabular}{cl}

toprule

Parameters & Physical meaning \\
```

表 4.3 一个标准的三线表格

I		
Animal	Description	Price (\$)
Gnat	per gram each	13.65 0.01
Gnu	stuffed	92.50
Emu Armadillo	stuffed frozen	33.33 8.99

```
% \midrule
% $C_{L\alpha}$ & Lift curve slope \\
% $a_{1}$ & Controls the shape of the stall curve \\
% $\alpha^{\star}$ & The break point at which $X=0.5$ \\
% \tau_{1}$ & Represents the tendency of the model to track the static curve \\
% \tau_{2}$ & Gives the model lift overshoot \\
% \bottomrule
% \end{\tabular}
% \end{\tabular}
% \end{\tabular}
```

代码 4.9 插入表 4.2

再给出一些表格的例子,如表 4.3、代码 4.10所示。

```
1 \begin{table}
    \centering
    \caption{一个标准的三线表格}
    \label{tab:firstone}
    \begin{tabular}{@{}llr@{}} \toprule
      \mbox{\mbox{\mbox{$multicolumn}$\{2\}\{c\}\{Item\} \ \ \ \ \ \ \ } (r)\{1-2\}
      Animal & Description & Price (\$)\\ \midrule
      Gnat & per gram & 13.65 \\
      & each & 0.01 \\
      Gnu & stuffed & 92.50 \\
10
      Emu & stuffed & 33.33 \\
11
      Armadillo & frozen & 8.99 \\ \bottomrule
    \end{tabular}
14 \end{table}
```

代码 4.10 三线表格

```
      Carticle{张 玲 2000信用风险评估方法发展趋势,

      title={信用风险评估方法发展趋势},

      author={张 玲 and 张 佳 林},

      journal={预测},

      volume={19},

      number={4},

      pages={72--75},

      year={2000}
```

代码 4.11 从 Google Scholar 找到的,但并不规范的.bib 条目

4.4 参考文献管理

4.4.1 将参考文献的内容与表现分离

BIT_HE_SI_S 论文模板使用 BibLaTeX 处理参考文献。它的出现让我们摆脱手写参考文献条目的麻烦。当然,使用者也可以手动编辑参考文献 item,直接插入文档中。但是,有 BibLaTeX 帮助,处理起参考文献更为简单。

参考文献的具体内容就是 misc 文件夹下的 ref.bib,参考文献的元数据(名称、作者、出处等)以一定的格式保存在这些文本文件中。.bib 文件也可以理解为参考文献的"数据库",正文中所有引用的参考文件条目都会从这些文件中"析出"。控制参考文献条目"表现形式"(格式)的代码通过 main.tex 中的

\usepackage[style=gb7714-2015,...]{biblatex}引入。按照学校要求,本模板使用的是国标 GB/T 7714 风格的参考文献析出格式(最新版本)。

.bib 数据库中的参考文献条目可以手动编写,也可以在 Google 的学术搜索中找到。各大数据库也支持将参考文献信息导出为.bib,省时省力。以 Google 学术搜索为例:在搜索结果中,单击"引用→BibTeX"链接,浏览器会打开新的标签页,出现类似代码 4.11所示的内容。

4.4.2 在正文中引用参考文献

如果想要按照章节分别管理参考文献,可以详见 biblatex 中关于 refsection 的部分。简单来说,就是使用 refsection 包裹一个章节的全部内容即可。但由于我校论文要求并非采用章节管理,因此不做赘述。

正文中引用参考文献时^[1],用\cite{key1,key2,key3...}可以产生"上标引用的参考文献",如^[2-4]。使用\parencite{key1,key2,key3...}则可以产生水平引用的参考文献,例如[5-7]。请看下面的例子,将会穿插使用水平的和上标的参考文献: [2,5,

7] 指出……,最近的工作^[3,8]聚焦在……,会议论文^[4,9-10],硕士学位论文^[6,11],博士学位论文^[12-14],标准文件^[7],技术报告^[15],电子文献^[16-17]。

最后总结一些注意事项:

- 参考文献只有在正文中被引用了,才会在最后的参考文献列表中出现;
- 参考文献数据库 *.bib 是文本文件, 请使用 UTF-8 编码, 不要使用 GB 18030 等编码;
- · 参考文献条目同样有内容和表现形式之分,这种可控性是 BibLaTeX 带来的。

4.5 用 listings 插入源代码

这里给使用 listings 宏包插入源代码的例子, 这里是一段 C 代码。另外, listings 宏包可以实现各种复杂、漂亮的效果, 想要进一步学习的同学, 可以参考《The Listings Package》。

```
\begin{lstlisting}[language={C}, caption={一段C源代码}]
#include <stdio.h>
...
\end{lstlisting}
```

```
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main() {
  pid_t pid;

switch ((pid = fork())) {
  case -1:
    printf("fork failed\n");
  break;
  case 0:
```

```
/* child calls exec */
execl("/bin/ls", "ls", "-l", (char*)0);
printf("execl failed\n");
break;
default:
    /* parent uses wait to suspend execution until child finishes */
wait((int*)0);
printf("is completed\n");
break;
}

return 0;
}
```

代码 4.12 一段 C 源代码

再给出一个插入 MATLAB 代码的例子。

```
\begin{lstlisting}[language={matlab}, caption={一段MATLAB源代码}]

function paper1

r=0.05;

n=100;
...
```

\end{lstlisting}

```
function paper1
z r=0.05;
n=100;
T=1;
X=1;
v0=0.8;
sigma=sqrt(0.08);
deltat=T/n;
for i=1:n
    t(i)=i*deltat;
w(i)=random('norm',0,t(i),1);
```

```
12 end
13 for i=1:n
                           alpha(i)=0.39;
15 end
16 for i=1:n
                          temp=0;
                          for k=1:i
18
                                            temp=temp+alpha(k);
19
                           end
20
                          B(i)=exp(r*t(i));
                           BB(i)=B(i)*exp(temp*deltat);
                           BBB(i) = \exp(-r*(T-t(i)));
24 end
25 for i=1:n
                           s0(i)=X*BBB(i);
                          v(i)=v0*exp((r-0.5*sigma^2)*t(i)+sigma*w(i));
2.7
                        for j=i+1:n
                                          D=X*BBB(j);
29
                                          d1=(\log(v(i)/D)+(r+sigma^2/2)*(t(j)-t(i)))/(sigma*sqrt(t(j)-t(i)));
30
                                          d2=d1-(sigma*sqrt(t(j)-t(i)));
31
                                          ppp(i,j) = D \cdot exp(-r \cdot (t(j)-t(i))) \cdot (1-cdf('normal',d2,0,1)) - v(i) \cdot
33 ormal',d1,0,1));
                          end
35 end
36 for i=1:n
                           s1(i)=0;
37
                          for j=i+1:n
38
                                            s1(i)=s1(i)+BB(j)^{(-1)}*alpha(j)*deltat*(X*BBB(j)-B(j)/B(i)*ppp(i,j));
                           s2(i)=0;
                          for j=1:n
                                            s2(i)=s2(i)+alpha(j);
43
44
                           s2(i)=X*exp(-r*T-s2(i)*deltat);
                           s(i)=BB(i)*(s1(i)+s2(i));
46
47 end
48 plot(s)
49 hold on;
```

50 plot(s0);

代码 4.13 一段 MATLAB 源代码

第5章 参考文献

- [1] 姜敏, 彭少贤, 郦华兴. 形状记忆聚合物研究现状与发展[J]. 现代塑料加工应用, 2005, 17(2): 53-56.
- [2] 崔万照, 马伟, 邱乐匠, 等. 电磁超介质及其应用[M]. 北京: 国防工业出版社, 2008.
- [3] Chen H, Chan C T. Acoustic cloaking in three dimensions using acoustic metamaterials[J]. Applied Physics Letters, 2007, 91: 183518.
- [4] Kim S, Woo N, Yeom H Y, et al. Design and Implementation of Dynamic Process Management for Grid-enabled MPICH[C]. the 10th European PVM/MPI Users' Group Conference. Venice, Italy, 2003.
- [5] Joannopoulos J D, Johnson S G, Winn J N. Photonic Crystals: Molding the Flow of Light[M]. Princeton University Press, 2008.
- [6] 猪八戒. 论流体食物的持久保存[D]. 北京: 广寒宫大学, 2005.
- [7] IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography[M]. New York: IEEE, 2000.
- [8] Chen H, Wu B I, Zhang B, et al. Electromagnetic Wave Interactions with a Metamaterial Cloak[J]. Physical Review Letters, 2007, 99(6): 63903.
- [9] Kocher C, Jaffe J, Jun B. Differential Power Analysis[C]. Wiener M. Lecture Notes in Computer Science: Advances in Cryptology (CRYPTO '99): vol. 1666. Springer-Verlag, 1999: 388-397.
- [10] 王重阳, 黄药师, 欧阳峰, 等. 武林高手从入门到精通[C]. 第 N 次华山论剑. 西安, 中国: 中国古籍出版社, 2006.
- [11] Jeyakumar A R. Metamori: A library for Incremental File Checkpointing[D]. Blacksburg: Virgina Tech, 2004.
- [12] 沙和尚. 论流沙河的综合治理[D]. 北京: 清华大学, 2005.
- [13] Zadok E. FiST: A System for Stackable File System Code Generation[D]. USA: Computer Science Department, Columbia University, 2001.
- [14] 白云芬. 信用风险传染模型和信用衍生品的定价[D]. 上海: 上海交通大学, 2008.
- [15] Woo A, Bailey D, Yarrow M, et al. The NAS Parallel Benchmarks 2.0[R/OL]. The Pennsylvania State University CiteSeer Archives. (1995-12-05). https://www.nasa.org/.
- [16] 萧钰. 出版业信息化迈人快车道[EB/OL]. 2001. https://www.creader.com/news/20011219/20011 2190019.html.
- [17] Christine M. Plant physiology: plant biology in the Genome Era[J]. Science, 1998, 281: 331-332.

结论

学位论文的格式要求通常比较严格,既是为了确保学术交流规范高效,也是科学研究严谨性的直观体现。然而市场上排版软件鱼龙混杂,使用者水平不一,学生对格式不够重视,写出的学位论文存在很多问题,常常不符合标准。BITHESIS 为符合北京理工大学本科生毕业设计(论文)规范的 LATEX 模板。采用 BITHESIS ,学生可轻松撰写出符合学校格式要求的学位论文,将关注点更多放在内容质量,而避免繁琐的格式调整。目前 BITHESIS 还在不断完善更新,可能存在错误或不足。欢迎广大师生提出宝贵意见,帮助我们发现并解决问题。本项目的 GitHub 仓库是 BITNP/BIThesis,欢迎提交 issue 或 pull request,帮助 BITHESIS 变得更好。

希望同学们参考这份指南,能快速掌握如何使用 BIT_HE_SI_S 模板,写出符合学校格式要求的本科生毕业设计(论文),并基本了解 L^MF_EX。

附录 A 学习资料

A.1 IATEX 学习资料推荐

- 《Overleaf 在线文档》(英文) 提供了非常好的在线学习资源。
- 《一份(不太)简短的 LATEX 2ε 介绍》 可以作为更详尽的语法手册。 更多可参考 LAT_EX 学习与使用资源 | BIThesis。

A.2 BITHESIS 模板配置使用手册

BIT_HE_SI_S 使用手册位于项目文件夹的 ./bithesis.pdf。它包括了关于 BIT_HE_SI_S 的详细使用说明,对于每一个配置选项都有详细的说明和示例。

附录 B BITHESIS 与北理工历代 IATEX 模板项目简介

- 在 2017 年之前,网络上已经出现一些北京理工大学学位论文 LATEX 模板。它们是"2012 大眼小蚂蚁版"和"2016 汪卫版",均以上海交通大学的模板为基础。
- 2017 2018 年, 计算机学院 2016 级研究生杨雅婷等人受研究生院委托, 制作了BIT-Thesis 研究生学位论文模板。
- 2019 2020 年, BIT_{HESIS} 最早由 2016 级的武上博、王赞、唐誉铭、牟思睿和詹熠莎等人维护。
 - 此时, BITHESIS 仅支持本科生毕业论文的排版。
 - 在此期间,BIT_{HESIS} 从无到有诞生了,包括使用手册、在线文档和开箱即用的模板。
 - 同时, 2017 级的赵池等同学完成了一系列 BITHESIS 的视频教程。
 - 武上博推进了教务部对 BITHESIS 的认可工作。
- 2020 2021 年, 2017 级的冯开宇、杨思云、郝正亮和顾骁等人接管了维护开发工作。
 - 在此期间,冯开字将原来的.tex 文件制作成了宏包,并发布到 CTAN 上。
 - 此版本是 V2 版本, 代号为 Birthday Cake.
- 2021 2022 年, 2021 级(硕士研究生)的冯开宇针对 2021、2022 毕业季收到的 反馈对该项目进行维护升级。
 - 在此期间, 冯开宇合入了杨雅婷等人在 2017 年开发的研究生学位论文模板。
 - 次年暑假期间,冯开宇用 expl3 重构了 L^AT_EX 样式代码,向用户提供了简易易用的接口。同时,也增加了本科全英文专业的毕设论文模板样式。
 - 此版本是 V3 版本, 代号为 Summer Time.
- 2023 年,冯开宇在此版本上增加了多种新的功能,并修复了一些已知的问题。 并推进了官方(教务部、研究生院)对 BITHESIS 的认可工作。

致谢

感谢北京理工大学教务部对本项目的大力支持。

感谢所有对本模板更新与维护做出贡献的同学和老师们,他们的名字可以在GitHub Contributors 上看到。同时,也由衷感谢在 GitHub 对该项目上提出大量珍贵修改意见的老师和同学们。