#include <fe.hpp>
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
class Feel::FiniteElement< P, PDual, Pts >
Finite element following Ciarlet framework.
- Author
- Christophe Prud'homme
- See Also
Inherits type< mpl::bool_< P::is_scalar >, mpl::identity< PolynomialSet< P, Scalar > >, mpl::identity< PolynomialSet< P, Vectorial > > >.
|
|
| FiniteElement (dual_space_type const &pdual) |
|
| FiniteElement (FiniteElement const &fe) |
|
| ~FiniteElement () |
|
|
self_type & | operator= (self_type const &fe) |
|
template<typename AE > |
value_type | operator() (uint16_type i, ublas::vector_expression< AE > const &pt) const |
|
template<typename AE > |
value_type | operator() (ublas::vector_expression< AE > const &pt) const |
|
matrix_type | operator() (points_type const &pts) const |
|
|
void | domainShape () const |
|
uint16_type | nbPoints () const |
|
primal_space_type const & | primal () const |
|
dual_space_type const & | dual () const |
|
points_type const & | points () const |
|
points_type const & | points (uint16_type f) const |
|
virtual std::string | familyName () const =0 |
|
|
typedef FiniteElement< P,
PDual, Pts > | self_type |
|
typedef P::value_type | value_type |
|
typedef P | primal_space_type |
|
typedef
primal_space_type::polyset_type | polyset_type |
|
typedef PDual< P, Pts > | dual_space_type |
|
typedef super::matrix_type | matrix_type |
|
typedef super::points_type | points_type |
|
typedef super::self_type | polynomialset_type |
|
typedef super::polynomial_type | polynomial_type |
|
typedef super::polynomial_view_type | polynomial_view_type |
| Total number of degrees of freedom (equal to refEle::nDof)
|
|
static const bool | is_modal = false |
|
static const uint16_type | nLocalDof = dual_space_type::nLocalDof |
| Number of degrees of freedom per vertex.
|
|
static const uint16_type | nDofPerVertex = dual_space_type::nDofPerVertex |
| Number of degrees of freedom per edge.
|
|
static const uint16_type | nDofPerEdge = dual_space_type::nDofPerEdge |
| Number of degrees of freedom per face.
|
|
static const uint16_type | nDofPerFace = dual_space_type::nDofPerFace |
| Number of degrees of freedom per volume.
|
|
static const uint16_type | nDofPerVolume = dual_space_type::nDofPerVolume |
|
static const uint16_type | nDof = nLocalDof |
|
static const uint16_type | nNodes = nDof |
|
static const uint16_type | nDofGrad = super::nDim*nDof |
|
static const uint16_type | nDofHess = super::nDim*super::nDim*nDof |
|
static const
fem::transformation_type | trans |
|
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- the domain shape of the finite element
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- the dual basis of the finite element
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- the family name of the finite element
Implemented in Feel::fem::Nedelec< N, O, T, Convex, TheTAG >, Feel::fem::RaviartThomas< N, O, T, Convex, TheTAG >, Feel::fem::Hermite< N, O, PolySetType, T, Convex, Pts >, Feel::fem::Lagrange< N, RealDim, O, PolySetType, ContinuityType, T, Convex, Pts, TheTAG >, and Feel::fem::CrouzeixRaviart< N, RealDim, PolySetType, T, Convex, TheTAG >.
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- the number of points associated with FE
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- points associated with the lagrange finite element
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
get the points associated with the finite element on a face f
if any
- Returns
- points associated with a face of the lagrange finite element
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
- Returns
- the polynomial set defining the finite element
-
the dual basis of the finite element
template<typename P, template< class Pr, template< class, uint16_type, class > class Pt > class PDual, template< class, uint16_type, class > class Pts>
Initial value:= ( fem::transformation_type )mpl::if_<mpl::and_<mpl::bool_<P::convex_type::is_simplex>,mpl::equal_to<mpl::int_<super::nOrder>, mpl::int_<1> > >,
mpl::int_<fem::LINEAR>,
mpl::int_<fem::NONLINEAR> >::type::value
The documentation for this class was generated from the following file: