OpenTTD
ground_vehicle.cpp
Go to the documentation of this file.
1 /* $Id: ground_vehicle.cpp 26702 2014-07-22 19:46:10Z rubidium $ */
2 
3 /*
4  * This file is part of OpenTTD.
5  * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6  * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7  * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8  */
9 
12 #include "stdafx.h"
13 #include "train.h"
14 #include "roadveh.h"
15 #include "depot_map.h"
16 
17 #include "safeguards.h"
18 
22 template <class T, VehicleType Type>
24 {
25  assert(this->First() == this);
26  const T *v = T::From(this);
27 
28  uint32 total_power = 0;
29  uint32 max_te = 0;
30  uint32 number_of_parts = 0;
31  uint16 max_track_speed = v->GetDisplayMaxSpeed();
32 
33  for (const T *u = v; u != NULL; u = u->Next()) {
34  uint32 current_power = u->GetPower() + u->GetPoweredPartPower(u);
35  total_power += current_power;
36 
37  /* Only powered parts add tractive effort. */
38  if (current_power > 0) max_te += u->GetWeight() * u->GetTractiveEffort();
39  number_of_parts++;
40 
41  /* Get minimum max speed for this track. */
42  uint16 track_speed = u->GetMaxTrackSpeed();
43  if (track_speed > 0) max_track_speed = min(max_track_speed, track_speed);
44  }
45 
46  byte air_drag;
47  byte air_drag_value = v->GetAirDrag();
48 
49  /* If air drag is set to zero (default), the resulting air drag coefficient is dependent on max speed. */
50  if (air_drag_value == 0) {
51  uint16 max_speed = v->GetDisplayMaxSpeed();
52  /* Simplification of the method used in TTDPatch. It uses <= 10 to change more steadily from 128 to 196. */
53  air_drag = (max_speed <= 10) ? 192 : max(2048 / max_speed, 1);
54  } else {
55  /* According to the specs, a value of 0x01 in the air drag property means "no air drag". */
56  air_drag = (air_drag_value == 1) ? 0 : air_drag_value;
57  }
58 
59  this->gcache.cached_air_drag = air_drag + 3 * air_drag * number_of_parts / 20;
60 
61  max_te *= 10000; // Tractive effort in (tonnes * 1000 * 10 =) N.
62  max_te /= 256; // Tractive effort is a [0-255] coefficient.
63  if (this->gcache.cached_power != total_power || this->gcache.cached_max_te != max_te) {
64  /* Stop the vehicle if it has no power. */
65  if (total_power == 0) this->vehstatus |= VS_STOPPED;
66 
67  this->gcache.cached_power = total_power;
68  this->gcache.cached_max_te = max_te;
69  SetWindowDirty(WC_VEHICLE_DETAILS, this->index);
71  }
72 
73  this->gcache.cached_max_track_speed = max_track_speed;
74 }
75 
80 template <class T, VehicleType Type>
82 {
83  assert(this->First() == this);
84  uint32 weight = 0;
85 
86  for (T *u = T::From(this); u != NULL; u = u->Next()) {
87  uint32 current_weight = u->GetWeight();
88  weight += current_weight;
89  /* Slope steepness is in percent, result in N. */
90  u->gcache.cached_slope_resistance = current_weight * u->GetSlopeSteepness() * 100;
91  }
92 
93  /* Store consist weight in cache. */
94  this->gcache.cached_weight = max<uint32>(1, weight);
95  /* Friction in bearings and other mechanical parts is 0.1% of the weight (result in N). */
96  this->gcache.cached_axle_resistance = 10 * weight;
97 
98  /* Now update vehicle power (tractive effort is dependent on weight). */
99  this->PowerChanged();
100 }
101 
106 template <class T, VehicleType Type>
108 {
109  /* Templated class used for function calls for performance reasons. */
110  const T *v = T::From(this);
111  /* Speed is used squared later on, so U16 * U16, and then multiplied by other values. */
112  int64 speed = v->GetCurrentSpeed(); // [km/h-ish]
113 
114  /* Weight is stored in tonnes. */
115  int32 mass = this->gcache.cached_weight;
116 
117  /* Power is stored in HP, we need it in watts.
118  * Each vehicle can have U16 power, 128 vehicles, HP -> watt
119  * and km/h to m/s conversion below result in a maxium of
120  * about 1.1E11, way more than 4.3E9 of int32. */
121  int64 power = this->gcache.cached_power * 746ll;
122 
123  /* This is constructed from:
124  * - axle resistance: U16 power * 10 for 128 vehicles.
125  * * 8.3E7
126  * - rolling friction: U16 power * 144 for 128 vehicles.
127  * * 1.2E9
128  * - slope resistance: U16 weight * 100 * 10 (steepness) for 128 vehicles.
129  * * 8.4E9
130  * - air drag: 28 * (U8 drag + 3 * U8 drag * 128 vehicles / 20) * U16 speed * U16 speed
131  * * 6.2E14 before dividing by 1000
132  * Sum is 6.3E11, more than 4.3E9 of int32, so int64 is needed.
133  */
134  int64 resistance = 0;
135 
136  bool maglev = v->GetAccelerationType() == 2;
137 
138  const int area = v->GetAirDragArea();
139  if (!maglev) {
140  /* Static resistance plus rolling friction. */
141  resistance = this->gcache.cached_axle_resistance;
142  resistance += mass * v->GetRollingFriction();
143  }
144  /* Air drag; the air drag coefficient is in an arbitrary NewGRF-unit,
145  * so we need some magic conversion factor. */
146  resistance += (area * this->gcache.cached_air_drag * speed * speed) / 1000;
147 
148  resistance += this->GetSlopeResistance();
149 
150  /* This value allows to know if the vehicle is accelerating or braking. */
151  AccelStatus mode = v->GetAccelerationStatus();
152 
153  const int max_te = this->gcache.cached_max_te; // [N]
154  /* Constructued from power, with need to multiply by 18 and assuming
155  * low speed, it needs to be a 64 bit integer too. */
156  int64 force;
157  if (speed > 0) {
158  if (!maglev) {
159  /* Conversion factor from km/h to m/s is 5/18 to get [N] in the end. */
160  force = power * 18 / (speed * 5);
161  if (mode == AS_ACCEL && force > max_te) force = max_te;
162  } else {
163  force = power / 25;
164  }
165  } else {
166  /* "Kickoff" acceleration. */
167  force = (mode == AS_ACCEL && !maglev) ? min(max_te, power) : power;
168  force = max(force, (mass * 8) + resistance);
169  }
170 
171  if (mode == AS_ACCEL) {
172  /* Easy way out when there is no acceleration. */
173  if (force == resistance) return 0;
174 
175  /* When we accelerate, make sure we always keep doing that, even when
176  * the excess force is more than the mass. Otherwise a vehicle going
177  * down hill will never slow down enough, and a vehicle that came up
178  * a hill will never speed up enough to (eventually) get back to the
179  * same (maximum) speed. */
180  int accel = ClampToI32((force - resistance) / (mass * 4));
181  return force < resistance ? min(-1, accel) : max(1, accel);
182  } else {
183  return ClampToI32(min(-force - resistance, -10000) / mass);
184  }
185 }
186 
191 template <class T, VehicleType Type>
193 {
194  const T *v = this->First();
195  /* Is the front engine stationary in the depot? */
196  assert_compile((int)TRANSPORT_RAIL == (int)VEH_TRAIN);
197  assert_compile((int)TRANSPORT_ROAD == (int)VEH_ROAD);
198  if (!IsDepotTypeTile(v->tile, (TransportType)Type) || v->cur_speed != 0) return false;
199 
200  /* Check whether the rest is also already trying to enter the depot. */
201  for (; v != NULL; v = v->Next()) {
202  if (!v->T::IsInDepot() || v->tile != this->tile) return false;
203  }
204 
205  return true;
206 }
207 
208 /* Instantiation for Train */
209 template struct GroundVehicle<Train, VEH_TRAIN>;
210 /* Instantiation for RoadVehicle */